Основы математики:
1. Теория множеств. Основные понятия теории множеств. Бинарные отношения и функции. Рефлексивность, симметричность, транзитивность. Взаимно-однозначные соответствия. Счетные множества;
2. Логика высказываний. Таблицы истинности. Пропозициональные формулы. Кванторы. Предикаты. Языки логики первого порядка. Интерпретация языков;
3. Основные комбинаторные величины и простейшие комбинаторные формулы. Числа сочетания (с повторениями и без повторений), числа размещения (с повторениями и без повторений), перестановки. Треугольник Паскаля. Бином Ньютона и биномиальные коэффициенты;
4. Формула включений-исключений. Задача о беспорядках. Задача о разбиении множеств. Мультиномиальные коэффициенты. Задачи о разбиениях чисел на слагаемые. Упорядоченные и неупорядоченные разбиения. Диаграммы Юнга;
5. Оценки и асимптотики для комбинаторных величин. Элементарные оценки факториалов, биномиальных коэффициентов и пр. Формула Стирлинга (б/д). Понятие об энтропии. Асимптотики для биномиальных коэффициентов и пр. Оценки сумм биномиальных коэффициентов;
6. Производящие функции. Числа Фибоначчи. Формула Бинэ и матричное представление чисел Фибоначчи. Линейные рекуррентные соотношения с постоянными коэффициентами. Применение производящих функций для решения рекуррентных соотношений. Производящие функции и разбиения чисел. Теорема Харди-Рамануджана (б/д). Производящие функции для биномиальные коэффициентов;
7. Экспоненциальные производящие фунцкии. Числа Каталана, Стирлинга, Белла, Бернулли и др. Их применения;
8. Основы теории графов. Пути, циклы, матрица инцидентности, связность. Дополнительный граф. Задача Рамсея. Изоморфизмы графов;
9. Деревья. Двудольные графы. Эйлеровы и Гамильтоновы пути и циклы.